ROCKPro64

From PINE64
Revision as of 17:42, 29 July 2022 by Kreyren0 (talk | contribs) (Setup a Serial Console (UART2) - Better wording to specify that the configuration is for linux ON rockpro64 instead of local system)
Jump to navigation Jump to search

The ROCKPro64 is the most powerful Single Board Computer released by PINE64. It is powered by a Rockchip RK3399 Hexa-Core (dual ARM Cortex A72 and quad ARM Cortex A53) 64-Bit Processor with a Mali T-860 Quad-Core GPU.

Key features include a PCIe x4 open ended slot, the use of LPDDR4 RAM, and industry standard heatsink mounting holes.

The ROCKPro64 is equipped with 2GB or 4GB LPDDR4 system memory, and 128Mb SPI boot Flash. There is also an optional eMMC module (up to 128GB) and microSD slot for booting. The board is equipped with 1x USB 3.0 type C Host with DP 1.2, 1x USB 3.0 type A Host, 2x USB 2.0 Host, Gigabit Ethernet, PI-2 GPIO Bus, MiPi DSI interface, eDP interface, touch Panel interface, stereo MiPi CSI interface, as well as many other device interfaces such as UART, SPI, I2C, for makers to integrate with sensors and other peripherals. Many different Operating Systems (OS) are freely available from the open source community, such as Android, Linux (Ubuntu, Debian, Arch), and BSD.

Board Pictures

Board Layout

An annotated ROCKPro64

Main Chips

  • RK3399 system-on-chip (1)
  • LPDDR4 SDRAM 1 (18)
  • LPDDR4 SDRAM 2 (3)
  • SPI NOR flash memory (17)
  • RK808 power management (near 19)
  • RTL8211 ethernet transceiver (near 25)
  • ES8316 Sound Codec (on rear of board)
  • The heatsink mounting holes around the RK3399 are 59 mm apart

Switches

The Power button (11, SW3): is the same as on your mobile phone - press and release after about 1 second to power on. Press and hold for about 3 seconds to power off.

The Reset button (10, SW901): perfoms a reset.

The Recover button (28, SW900): used to enter maskrom mode.

Connectors, Sockets and Headers

Diagram Schematic
designator
Silkscreen
label
Number
of pins
Description
2 U39 PI-2-bus 40 Pi-2 bus
4 J8 +FAN- 2 PWM controlled fan header
5 J10 SPDIF 3 SPDIF header
6 U6 +RTC- 2 RTC battery backup header
7 U31 Wifi-BT 16 SDIO WIFI/BT module-MIMO 2
8 USB3 9 USB-3 and USB Type C
9 USB1 2×4 Dual USB-2
12 IR1 IR 3 infrared receiver socket
13 J16 Headphone+mic 4 Headphone + mic 3.5mm jack
- CON16 GND PWR RST GND 4 Power & reset, unpopulated
header near Headphone jack
14 U29 EMMC 34 eMMC connector
14* J13 13 TF-card, a.k.a. microSD
(* under 14 on the bottom side)
15 U30 14 SDIO WIFI/BT module-MIMO 1
16 SW4 2 Jumper to #Disable eMMC
19 J15 PCI 64 PCI-express X4 socket
20 J21 DSI 30 DSI
21 J22 EDP 30 LCD EDP
22 CON1 TP 6 touch panel connector
23 CON15 4 DC out for SATA disk cable
(direct connect from DC-IN)
24 J11 DC-IN 2 Power input, positive tip;
12V/3A (minimum) recommended
25 U32 8 RJ45
26 J14 19 HDMI
27 J17 MIPI CAM 32 MIPI-1
29 J19 MIPI CAM 32 MIPI-2
30 J18 CIF 26 CIF

LEDs

A green LED next to the 12V input barrel connector will light as long as there is 12V applied to the connector. (Even if the RockPro64 is powered off.)

A white LED behind the reset button will light as long as the RockPro64 is running (it comes on a few seconds after power on, when control is passed to the operating system.)

A red LED behind the reset button is DIY - it is lit for example if the board is in OTG mode with an Ayufan image, or if an Android image is in standby mode.

Yellow and green LEDs on the LAN socket behave in a standard way.

Jumpers

They are used for boot device selection, as described in the following section.

Disable eMMC

There is an unlabelled (on the PCB silk-screen) 2-pin jumper (16) between the eMMC socket (14) and the SPI chip (17). It is designated as SW4 on the schematic diagram. The default condition is OPEN (no jumper). It is useful for controlling the boot as follows:

Default boot device (with no SPI software) is eMMC, then SDcard. If both the eMMC and the SDcard contain bootable images then the eMMC can be disabled by installing the jumper. This completely removes the eMMC from the resulting OS. If you wish the eMMC to be visible in the booted OS the jumper should be removed 2 seconds after applying power (and before the white LED comes on).

The possible combinations are summarised in the table below.

  • 1 = present
  • 0 = not present
µSD eMMC SW4 boot from
0 0 0 unsupported
0 0 1 unsupported
0 1 0 eMMC
0 1 1 unsupported
1 0 0 SDCard
1 0 1 SDCard
1 1 0 eMMC
1 1 1 SDCard

Disable SPI (while booting)

There is a second possibility to jumper your ROCKPro64: If you mess-up your SPI and are unable to boot, jumpering pins 23 (CLK) and 25 pin (GND) on the PI-2-bus header will disable the SPI as a boot device. (This was taken from the IRC logs, 09 August 2018 @ 17:23) You have to remove the jumper 2 seconds after having started your RP64 (before the white LED turns ON) otherwise the SPI will be missing and you won't be able to flash it. Ayufan images contain (at the moment) only one script for the SPI and the RP64, it's "rockpro64_reset_spi_flash". Other SPI scripts are dedicated to the R64 (as it is written on the name) and it will mess-up your RP64 SPI if you use them.

Getting Started

This section gives important information to get the board up and running.

Software and OS Image Builds

In the ROCKPro64 Software Release page, you will find a complete list of currently supported Operating System images that work with the ROCKPro64, as well as other related software. The Software Release page has links to download the images as well as high level instructions to load each image.

The page includes many OS images and descriptions. Some links:

Those linked OS support both microSD and eMMC Boot.

Please see the NOOB page for detailed discussion of what you need (prerequisites) as well as instructions if the high level instructions are insufficient.

More Advanced Linux Bits

Some Linux tips are given below.

How to Update Your Linux

For Debian/Ubuntu images entering the following commands at a terminal prompt

sudo apt-get update
sudo apt-get upgrade

will keep your installation up to date. To update Ayufan images to the next release (when available) use the following command

sudo apt-get dist-upgrade

If you are happy to update your system to pre-releases of Ayufan images then modify /etc/apt/sources.list.d/ayufan-rock64.list as per the comment in that file.

The kernel in Ayufan releases is under active development and, if you wish to install a later version, then it is best to use a package manager. In synaptic (for example), if you search for package names linux-image-4.4 you should see your currently installed version(s) as well as any more recent ones. Similarly if you wish to install the mainline kernel then searching for linux-image-4.18 will show you what is available. At the time of writing (August 2018) there are significant features missing from the mainline kernel for aarch64 processors (e.g. HDMI sound).

Useful Scripts

After you install an Ayufan image you will find some scripts in /usr/local/sbin/ and /usr/local/bin/ that may be useful. (Need to expand this section)

Video Playback

Ayufan has some old documentation on video playback here. For your ROCKPro64 the install should be

sudo apt-get install ffmpeg mpv libmali-rk-midgard-t86x-r14p0-gbm

(These modules are included in the Ayufan deskop releases.) At which stage rkmpv myvideo.mp4 will play a fullscreen, hardware assisted, version of your video. rkmpv is at /usr/local/bin/rkmpv

Swapping Kernel Versions

extlinux is in use on Ayufan images (at least) which enables some switching between installed kernel versions - intro documentation is here. In particular after you install any additional kernels, you can edit your /boot/extlinux/extlinux.conf file to specify which of the kernels you have installed to use for the next boot.

From Ayufan version 0.7.11 the script /usr/local/sbin/change-default-kernel.sh does a nice little menu swap for you if you run it as root (sudo).

Using an NVMe Disk as rootfs

Forum member Bullet64 has documented how to move rootfs to an NVMe disk. This is useful until we get a full SPI option to boot from the NVMe.

More advanced bits related to any OS

This section gives some hints for advanced users.

Setup a Serial Console (UART2)

Warning: RockPro64 is designed to use 3VDC3A (3 Volts Direct Current 3 Ampere) for the connection, using 5VDC and more might damage the board!

To use Serial Console you will a need operating system that supports it on your RockPro64, by default the serial console is provided for baud 9 600 which is far too slow for rockpro64 so consider using 1 500 000 (1.5Mbps) instead IF your serial console device supports it (many doesn't which results in their unability to use the console).

Warning: Do not connect RxD (pin 10) until the U-Boot SPL is running (see RK3399 boot sequence) or the SPL will not start

In terms of connections you need to perform the following from your serial console-capable device e.g. Pine64's Woodpecker available in store:

  • GND <-> GND (pin 6)
  • RxD <-> TxD (pin 8)
  • TxD <-> RxD (pin 10)

After the configuration of your preferred operating system you can connect to the serial console using any of these commands:

 $ screen /dev/ttyUSB0 1500000
 $ picocom /dev/ttyUSB0 -b 1500000
 $ minicom -D /dev/ttyUSB0 -b 1500000

NOTE: You might need a root permission if your user is not in the appropriate user-group e.g. dialup on GNU/Linux

Alternatively there is a detailed guide on forums: https://forum.pine64.org/showthread.php?tid=6387

GNU/Linux

With GNU/Linux on your RockPro64 the built-in support for serial console can be enabled by parsing parse e.g. console=ttyS2,1500000n8 in the kernel command line, many distributions make this available by default, but consider verifying the contents of /boot/extlinux/extlinux.conf if you encounter issues.

NOTE: the n8 in the kernel argument means no parity, 8 bits per character

Booting from USB or PXE

The default choice of boot device is first eMMC (if present) then SDcard. See jumpers above for details on adjusting this sequence.

It is possible to flash the SPI to extend the options for boot devices to USB drives or PXE. The preferred method is now the rock64_write_spi_flash.sh script (see useful scripts above.) The NOOB wiki page has more details here.

Background info and historic details of this usage can be found here.


Booting from SPI using u-boot

Warning: idbloader is not open-source

Always be prepared to recover from a broken SPI boot BEFORE flashing or you will end up with a broken boot.

In general the recovery is killswitching SPI through shorting pins 23 <-> 25 together and then loading u-boot from a storage device e.g. sd-card or eMMC where majority of GNU distributions e.g. Armbian and Manjaro usually have u-boot packaged with the provided images.

Follow instructions in https://github.com/sigmaris/u-boot/wiki/Flashing-U-Boot-to-SPI#instructions-for-rockpro64

Boot sequence

The RockPro64 boot sequence has been documented here by sigmaris.

OTG Mode

You can boot your ROCKPro64 into OTG mode with the use of the Recover button (see switch 28 above.) Note there are 2 OTG ports on your ROCKPro64: the type-C USB 3 socket is definitely one. From the schematic it appears the USB 3 (type A) socket is the other, but this has yet to be confirmed.

The method is to power off the board. Then push and hold the Recover button and push and release the Power button.

  • If you have an Ayufan bootable image in either the SDcard or eMMC then there are 4 OTG modes described here including Android fastboot, RockUSB and MaskROM modes. Releasing the Recover button as soon as the white LED lights counts as 1 blink. Keeping it pressed you will get 2 blinks of the white LED etc. Once the board enters OTG mode the red LED will be lit. In mode 1 the boot and linux-root partitions of the card with the Ayufan image (partitions 6 & 7 of a linux installation) are made available as devices. In all cases the USB device made available at the host has device ID 18d1:d00d.
  • If you do not have an Ayufan image in either the SDcard or the eMMC, then neither white nor red LEDs will light, but the board will enter MaskROM mode where the USB device made available at the host has device ID 2207:330c.

NVMe Drives

Please be aware that the PINE64 SSD interface card is intended for use with NVMe devices. These can be identified by the fact they have a single (Key M) notch, e.g. the WD Black devices.

While M2/NGFF SATA devices (with a Key B notch, typically have Key M as well) will physically fit, they will not work. e.g. WD Blue devices.

SATA Drives

SATA drives can be connected directly via the ROCKPro64 PCIe interface card. Please note the card does not include the power cable - that is a separate item. Equally you must be aware that connecting SATA drives in this manner means they will be drawing power from your ROCKPro64 - please ensure you are using a 5A or better power supply.

ExplainingComputers did a YouTube ROCKPro64 PCIe SATA card review and tests using a Ubuntu console and OpenMediaVault.

Wi-Fi & Bluetooth Module

If you have bought the Wi-Fi and Bluetooth module from the Pine store then instructions for connecting it can be found on the accessories page here. Please note that the 0.7.9 Ayufan's linux releases (August 2018) have deliberately DISABLED support for this module in the search for stability. It can be tested and used with the Android image.

It can also be used on Manjaro by installing ap6256-firmware and wireless-regdb packages.

7" LCD Touch Screen

Instructions for connecting the LCD touch screen from the Pine are here.

Note at present (August 2018) this screen is only supported by the Android image.

Warning: When using the touchscreen ensure the cables are properly connected and tightened down and that you do not let the metal backplane touch the SBC

RTC Battery Backup

The Pine store has a couple of options for RTC battery backups: a AAA version here or a CR-2032 version here. Instructions for plugging in either of them are also on the Accessories page . For the ROCKPro64, the backup plugs into the RTC connector, number 6 in the board layout diagram above, next to the USB3 and case screw point.

Acrylic Open Enclosure

Assembly instructions for the acrylic enclosure from the Pine store are also on the Accessories page

NAS case

The Exploded View Installation Diagram for the NAS case from the Pine store.

Detailed NAS Case overview and assembly instructions can be found here.

Hardware Compatibility

Hardware Compatibility Page

Please contribute to the hardware compatibility page, which lists hardware which has been tested with the rockpro64, whether successful or not.

Limitations

Older firmware overwrites actively used memory

Some people get system freeze when:

  • use SATA disk with ROCKPro64 PCIe card. (maybe on newer PCIe card ASM1062 vs ASM1061)
  • or do read or write 4GB to the flash. (not using PCIe)

If you connect the serial console you will see a Linux kernel oops: (a)synchronous external abort.

Both issues are in fact the same software BUG. There is no hardware problem. Currently, most OS do use uboot with a rockpro blob FW which use memory that Linux kernel is not aware of.

People are currently fixing this BUG, but it may take some time. In the mean time, you can fix it manually.

The latest u-boot can boot the rockpro64 without any blobs from rockchip. Install first arm-none-eabi-gcc and aarch64-linux-gnu-gcc compiler, then run the following commands:

git clone https://github.com/ARM-software/arm-trusted-firmware.git atf
make -C atf CROSS_COMPILE=aarch64-linux-gnu- PLAT=rk3399 bl31
git clone https://gitlab.denx.de/u-boot/u-boot.git u-boot
cd u-boot/
git checkout v2020.01-rc5
make rockpro64-rk3399_defconfig
BL31=../atf/build/rk3399/release/bl31/bl31.elf make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu-

Which gives you idbloader.img and u-boot.itb. Copy them to the rockpro64, and run the following: (Or put your SD card into your PC)

sudo dd if=idbloader.img of=/dev/mmcblk0 seek=64
sudo dd if=u-boot.itb of=/dev/mmcblk0 seek=16384
sync

PCIe Controller Hardware Error Handling Bug

There is an issue with the rk3399 pcie controller that is currently unmitigated:

The rk3399 pcie controller throws either a synchronous abort or a SError when a pcie device sends an unknown message.

The error type is determined by which cpu cluster handles the message.

Virtualization

The PCIe controller on the rk3399 is not behind an IOMMU. This means it is not possible to safely pass through PCIe devices to a virtual machine.

Board Features

This section outlines the most important characteristics of the board and its components.

SoC and Memory Specification

  • Based on Rockchip RK3399
Rockchip RK3399.png

CPU Architecture

  • Dual-core Cortex-A72 up to 2.0GHz CPU
  • Quad-core Cortex-A53 up to 1.5GHz CPU
  • big.LITTLE architecture: Dual Cortex-A72 + Quad Cortex-A53, 64-bit CPU
  • Cortex-A72:
    • 1-4x Symmetrical Multiprocessing (SMP) within a single processor cluster, and multiple coherent SMP processor clusters through AMBA 5 CHI or AMBA 4 ACE technology
    • AArch64 for 64-bit support and new architectural features
    • L1 cache 48KB Icache and 32KB Dcache for each A72
    • L2 cache 1024KB for big cluster
    • DSP & SIMD extensions
    • VFPv4 floating point
    • Hardware virtualization support
  • Cortex-A53:
    • L1 cache 32KB Icache and 32KB Dcache for each A53
    • L2 cache 512KB for little cluster
  • Full implementation of the ARM architecture v8-A instruction set
  • ARM Neon Advanced SIMD (single instruction, multiple data) support for accelerated media and signal processing computation
  • ARMv8 Cryptography Extensions
  • In-order pipeline with symmetric dual-issue of most instructions
  • Include VFP v3 hardware to support single and double-precision operations
  • TrustZone technology support
  • Full CoreSight debug solution
  • One isolated voltage domain to support DVFS

GPU Architecture

  • ARM Mali-T860MP4 Quad-core GPU
  • The highest performance GPUs built on Arm Mali’s famous Midgard architecture, the Mali-T860 GPU is designed for complex graphics use cases and provides stunning visuals for UHD content.
  • Frequency: 650MHz
  • Throughput: 1300Mtri/s, 10.4Gpix/s
  • OpenGL® ES 1.1, 1.2, 2.0, 3.1, 3.2, Vulkan 1.0*, OpenCL™ 1.1, 1.2, DirectX® 11 FL11_1, RenderScript™.

System Memory

  • LPDDR4 RAM Memory Variants: Dual Channels 2GB and 4GB.
  • Storage Memory: 128Mb built-in SPI Flash memory (as at August 2018 only support for USB boot).

Display

  • Dual VOP: one supports resolutions up to 4096x2160 and AFBC; the other supports resolutions up to 2560x1600
  • Dual channel MIPI-DSI (4 lanes per channel)
  • eDP 1.3 (4 lanes with 10.8Gbps) to support displays, with PSR
  • Digital Video port up to 4Kp60
  • DisplayPort 1.2 (4 lanes, up to 4K 60Hz)
  • Supports Rec.2020 and conversion to Rec.709

Video

  • Digital Video output up to 4K@60Hz
  • 4K HDR @ 30fps
  • H.264/AVC Base/Main/High/High10 profile @ level 5.1; up to 4Kx2K @ 60fps
  • H.265/HEVC Main/Main10 profile @ level 5.1 High-tier; up to 4Kx2K @ 60fps
  • VP9, up to 4Kx2K @ 60fps
  • MPEG-1, ISO/IEC 11172-2, up to 1080P @ 60fps
  • MPEG-2, ISO/IEC 13818-2, SP@ML, MP@HL, up to 1080P @ 60fps
  • MPEG-4, ISO/IEC 14496-2, SP@L0-3, ASP@L0-5, up to 1080P @ 60fps
  • VC-1, SP@ML, MP@HL, AP@L0-3, up to 1080P @ 60fps
  • MVC is supported based on H.264 or H.265, up to 1080P @ 60fps

Audio

  • 3.5mm Phone Jack
  • 3-pin S/PDIF header
  • Audio via Digital Video port

Camera

  • Dual MIPI CSI,dual ISP, maximum input resolution of 13M pixels

Network

  • 10/100/1000Mbps Ethernet - Capable of pushing 941 MBit/s in iperf3
  • Wi-Fi 802.11 ac/a/b/g/n with Bluetooth 4.01 (old version with 2x2) / Bluetooth 5 (new version with 1x1) (optional)

Storage

  • microSD - bootable, support SDHC and SDXC, storage up to 256GB
  • eMMC - bootable (optional eMMC Module)
  • 1 USB3.0 Host port
  • 1 USB type C OTG port with DP output
  • 2 USB2.0 Dedicated Host ports

Expansion Ports

  • 2x20 pins "Pi2" GPIO Header
  • PCIe 2.1 (4 full-duplex lanes with 20Gbps) x4 open ended port

GPIO Pins

Assigned To Pin Nr. Pin Nr. Assigned To
3.3 V 1 2 5 V
GPIO1_C4 (I2C8_SDA) a 3 4 5 V
GPIO1_C5 (I2C8_SCL) a 5 6 GND
GPIO4_D0 (CPU_GPCLK) 7 8 GPIO4_C4 (UART2_TX)
GND 9 10 GPIO4_C3 (UART2_RX)
GPIO1_C6 11 12 GPIO3_D0 (I2S0_CLK)
GPIO1_C2 13 14 GND
GPIO1_A1 15 16 GPIO1_A4
3.3 V 17 18 GPIO4_C5 [SPDIF]
[UART4_TX] GPIO1_B0 (SPI1_TXD) 19 20 GND
[UART4_RX] GPIO1_A7 (SPI1_RXD) 21 22 GPIO4_D1
GPIO1_B1 (SPI1_CLK) 23 24 GPIO1_B2 (SPI1_CSN0)
GND 25 26 GPIO1_B5
GPIO1_B3 (I2C4_SDA) 27 28 GPIO1_B4 (I2C4_SCL)
GPIO4_D3 29 30 GND
GPIO4_D4 31 32 GPIO3_D4 (I2S0_SDI1SDO3)
GPIO3_D5 (I2S0_SDI2SDO2) 33 34 GND
GPIO3_D2 (I2S0_LRCKTX) 35 36 GPIO3_D6 (I2S0_SDI3SDO1)
GPIO3_D1 (I2S0_LRCKRX) 37 38 GPIO3_D3 (I2S0_SDI0)
GND 39 40 GPIO3_D7 (I2S0_SDO0)

Notes

  1. pulled high to 3.3V through 2.2kOhm resistor

Linux /dev/gpiochip Assignments

Pin Nr. Chip Line
3 1 20
5 1 21
7 4 24
8 4 20
10 4 19
11 1 22
12 3 24
13 1 18
15 1 1
16 1 4
18 4 21
19 1 8
21 1 7
22 4 25
23 1 9
24 1 10
26 1 13
27 1 11
28 1 12
29 4 27
31 4 28
32 3 28
33 3 29
35 3 26
36 3 30
37 3 25
38 3 27
40 3 31

On Linux, using the new /dev/gpiochip API, the n in GPIOn_XX appears to correlate to the number of the /dev/gpiochipn, and the XX to the definition RK_PXX of lines in include/dt-bindings/pinctrl/rockchip.h of the Linux kernel source. Having these named in the dts would be nice.

You can use libgpiod to drive them, and test them with the included tools (gpioinfo, gpioset, ...)

For example, gpioset 4 25=1 (run as root) would turn pin 22 on. Do beware that poking the wrong GPIO pin can lock up your system.

The conversion table at right is also available as a C header file.

Working Features

Feature/Option Android Android Version Linux Linux Version Test/Verify Steps Notes Product Link
PINE64 LCD Touchscreen (Screen/Touch) Yes/Yes No/No Maybe this will help get this working? 7″ LCD Touch Screen Panel
Wireless

ROCKPro64 2×2 MIMO Dual Band WiFi 802.11AC / Bluetooth 4.2 Module (old) ROCKPro64 1x1 Dual Band WiFi 802.11AC / Bluetooth 5.0 Module (new)

Yes/Yes No/No In 0.7.9 Ayufan linux releases this is deliberately disabled for stability reasons. ROCKPro64 1x1 Dual Band WiFi 802.11AC / Bluetooth 5.0 Module
USB OTG use this script: rockpro64_enable_otg.sh, then configure ip on usb0: ifconfig usb0 169.169.222.222 and run iperf, you should likely see about 200-300MB/s ROCKPro64_Main_Page#OTG_mode
USB Mass Storage USB2/USB3 Yes/yes Yes/Yes
Dedicated Fan Power (pwm1) Yes You might want to use ATS.
GPIO pins (raw or via RPI python scripts) Check out what Frank Mankel has done.
MIPI CSI Camera 1 and 2
eDP
HDMI Audio Yes 7.1.2 Yes 4.4.132-1083 - 4.4.138-1100 Stopped working in 4.4.154.1105. Ayufan is looking into it.
3.5mm Audio/Mic
USB-C Host
Display via USB-C Yes 7.x and 8.x eDP via USB-C per tillim. No sound on Android 7.x. Sound does work on Android 8.x
ROCKPro64 PLAYBOX ENCLOSURE N/A N/A N/A Ventilation does not exist, thus requires manual changes to add venting. Case should be modified to account power adapter not being centered in cut holes. Opening the case once close without modifying it first is near impossible without special tools. Graphene heatsink is included and does well for Linux but not Android. https://pine64.com/?product=rockpro64-playbox-enclosure
ROCKPro64 30mm Tall Profile Heatsink N/A N/A N/A https://store.pine64.org/?product=rockpro64-heatsink
ROCKPro64 20mm Mid Profile Heatsink N/A N/A N/A https://pine64.com/?product=rockpro64-20mm-mid-profile-heatsink
Fan For ROCKPro64 20mm Mid Profile Heatsink N/A N/A N/A You might want to use fanctl to control the fan while keeping your CPU cool https://pine64.com/?product=fan-for-rockpro64-20mm-mid-profile-heatsink
HDMI output 4K@60Hz
PCIe 2.1
Real Time Clock (RTC) battery backup https://store.pine64.org/?product=rtc-backup-battery-cr-battery
Boot from USB/PXE

RockChip themselves have tables of supported features at 4.4 and mainline kernel versions in their wiki here.

Board Information, Schematics and Certifications

  • Certifications:
    • Disclaimer: Please note that PINE64 SBC is not a "final" product and in general certification is not necessary. However, PINE64 still submit the SBC for FCC, CE, and ROHS certification and obtain the certificates to proof that SBC board is capable on passing the testing. Please note a final commercial product needs to performs its owns testing and obtains its owns certificates.
    • ROCKPro64 FCC Certificate
    • ROCKPro64 CE Certificate
    • ROCK64 RoHS Report

Datasheets for Components and Peripherals

Useful Articles and Blog Posts

If you want to dive in to the ecosystem, here's a short list of various articles and blog posts that can help you set up your soft- or hardware development environment.

The NAS Case for the ROCKPro64

Front View of the PINE64 NAS Case for the ROCKPro64

Please follow this this link for detailed instructions on how to assemble the ROCKPro64 NAS Case.

The NAS Case instructions also contains detailed information about:

  • what the NAS Case ships with
  • What additional things you need to purchase for your NAS Case
  • What optional things you can consider purchasing for your NAS build
  • What OS Image we recommend you use for your NAS build
  • IO accessibility after installing the ROCKPro64 into the NAS Case
  • NAS Case Exploded View
  • NAS Case Drawing

3D printable ITX mounting brackets

A Quartz64-A mounted in an ITX case using 3D printed brackets

Allows mounting a ROCKPro64-A or Quartz64-A board inside a regular PC case that conforms to the ITX standard, using 3D printed brackets:

  • AMF/STL/STEP files plus the original FreeCAD file used to create the models File:RP64-A Q64-A to ITX mounting brackets.zip
  • Make sure to flip the two brackets by 180 degrees on one of the horizontal axes (X/Y) in your slicer of choice before printing to avoid unnecessary supports
  • To allow enough clearance between the board and the bracket you either need to print four copies of the washer model or add nut(s) between the board and the bracket
  • If using nuts for the clearance between the board and the brackets, make sure it creates at least 3.2mm of spacing in between
  • Depending on the accuracy and calibration of a 3D printer, slight deviation can occur and you likely need to manually widen some of the holes to allow screws to fit

Other Resources

Troubleshooting

No Video or GPU Acceleration on Debian

If you can log in through serial but don't get any video or GPU acceleration on Debian, this is likely due to Debian's decision to compile the devfreq governors as loadable modules but not including them early enough for panfrost to be able to be provided with one of them.

The usual sign of this being the case is the following line in your log: [drm:panfrost_devfreq_init [panfrost]] *ERROR* Couldn't initialize GPU devfreq

Log in to your ROCKPro64, and run the following:

sudo -i
echo governor_simpleondemand >> /etc/initramfs-tools/modules && update-initramfs -u -k $(uname -r)
exit

Then, reboot.