Difference between revisions of "PineTime"

From PINE64
Jump to navigation Jump to search
(noted that NRFConnect is not recommended because of the note in the GitHub README)
(39 intermediate revisions by 19 users not shown)
Line 1: Line 1:
== Frequently asked questions ==
[[File:Pinetime.png|400px|thumb|right|The PineTime]]
 
The '''PineTime''' is a free and open source smartwatch capable of running custom-built open operating systems. Some of the notable features include a heart rate monitor, a week-long battery, and a capacitive touch IPS display that is legible in direct sunlight. It is a fully community driven side-project which anyone can contribute to, allowing you to keep control of your device.
 
== Frequently asked questions / Getting started ==


'''Read these first!'''
'''Read these first!'''


* [[PineTime FAQ| Frequently Asked Questions about the devkit]]
* [[Upgrade PineTime to InfiniTime 1.0.0|Upgrading your new PineTime to InfiniTime 1.0.0]]
* [[PineTime FAQ| Frequently Asked Questions about the PineTime]]
* [[PineTime Devkit Wiring]]
* [[Reprogramming the PineTime|Reprogramming the PineTime (development kit)]]
* [[Reprogramming the PineTime|Reprogramming the PineTime (development kit)]]
* [[Switching your PineTime between InfiniTime and Wasp-os]]


== Default OS ==
== Default OS ==
Line 10: Line 17:
The current default operating system on the PineTime is called [[InfiniTime]], you can find more information about the firmware on its GitHub page. First devkits shipped with a proprietary custom firmware.
The current default operating system on the PineTime is called [[InfiniTime]], you can find more information about the firmware on its GitHub page. First devkits shipped with a proprietary custom firmware.


== Short overview ==
You can find a list of available firmware and other software here: [[PineTime Development]]
 
== Companion Apps ==
 
PineTime/InfiniTime needs a companion app to e.g. upload a firmware, get notifications from a phone, or just get the date/time. 
Here are some companion apps:
 
* [https://www.gadgetbridge.org Gadgetbridge] (Android >= 4.4) - Companion mobile app, supports updating firmware/bootloader, send notifications, etc.
* [https://openrepos.net/content/piggz/amazfish Amazfish] (SailfishOS and Linux) - Companion mobile and desktop app, supports updating firmware/bootloader, send notifications, etc.
* [https://github.com/alexr4535/siglo Siglo] (Linux) - Companion desktop app.
* [https://github.com/ZephyrLabs/PinetimeFlasher PinetimeFlasher] (Windows) - Companion desktop app, only supports flashing firmware.
* [https://apps.apple.com/us/app/nrf-connect-for-mobile/id1054362403 nRFConnect] (iOS) - Only supports flashing firmware.  The app is closed source and versions after 4.24.3 don't work for the PineTime anymore
* [https://github.com/xan-m/InfiniLink InfiniLink] (iOS) - Companion mobile app in development. Supports updating firmware/bootloader, setting date and time, Apple Music controls, and battery and heart rate data.
* [https://gitea.arsenm.dev/Arsen6331/itd itd] (Linux)
 
== Short overview / Specifications ==
'''Dimensions:''' 37.5 x 40 x 11mm <br>
'''Dimensions:''' 37.5 x 40 x 11mm <br>
'''Weight:''' 38 grams <br>
'''Weight:''' 38 grams <br>
Line 25: Line 47:
'''Sensors:''' Accelerometer, Heart rate sensor <br>
'''Sensors:''' Accelerometer, Heart rate sensor <br>
'''Feedback:''' Vibration motor <br>
'''Feedback:''' Vibration motor <br>
'''Battery:''' 170-180mAh LiPo
'''Battery:''' 170-180mAh 3.8V LiPo


= Community =
= Community =
Line 40: Line 62:
=== Developers and coding ===
=== Developers and coding ===
* [https://app.element.io/#/room/#pinetime-dev:matrix.org Matrix Channel] (No login required to read)
* [https://app.element.io/#/room/#pinetime-dev:matrix.org Matrix Channel] (No login required to read)
* IRC Server: [ircs://irc.pine64.org#pinetime-dev irc.pine64.org] Channel: PineTime-dev
* [https://t.me/pinetime_dev Telegram group]
* [https://t.me/pinetime_dev Telegram group]
* [https://discordapp.com/invite/DgB7kzr Discord server invite link]
* [https://discordapp.com/invite/DgB7kzr Discord server invite link]


== Development efforts ==
== Development efforts ==
Line 53: Line 73:
If you want to dive in to the ecosystem, here's a short list of various articles and blog posts that can help you set up your soft- or hardware development environment.
If you want to dive in to the ecosystem, here's a short list of various articles and blog posts that can help you set up your soft- or hardware development environment.


* [https://medium.com/swlh/sneak-peek-of-pinetime-smart-watch-and-why-its-perfect-for-teaching-iot-81b74161c159 Sneak Peek of PineTime Smart Watch… And why it’s perfect for teaching IoT]
* [https://www.ncartron.org/one-week-with-my-pinetime---a-feedback.html Using the PineTime in production (January 2021)]
 
* [https://lupyuen.github.io/articles/sneak-peek-of-pinetime-smart-watch-and-why-its-perfect-for-teaching-iot Sneak Peek of PineTime Smart Watch… And why it’s perfect for teaching IoT]
* [https://medium.com/@ly.lee/building-a-rust-driver-for-pinetimes-touch-controller-cbc1a5d5d3e9 Building a Rust Driver for PineTime’s Touch Controller]
* [https://lupyuen.github.io/articles/building-a-rust-driver-for-pinetimes-touch-controller Building a Rust Driver for PineTime’s Touch Controller]
 
* [https://lupyuen.github.io/articles/porting-druid-rust-widgets-to-pinetime-smart-watch Porting (druid) Rust Widgets to PineTime Smart Watch]
* [https://medium.com/@ly.lee/porting-druid-rust-widgets-to-pinetime-smart-watch-7e1d5a5d977a Porting (druid) Rust Widgets to PineTime Smart Watch]
* [https://lupyuen.github.io/articles/optimising-pinetimes-display-driver-with-rust-and-mynewt Optimising PineTime’s Display Driver with Rust and Mynewt]
 
* [https://medium.com/@ly.lee/optimising-pinetimes-display-driver-with-rust-and-mynewt-3ba269ea2f5c Optimising PineTime’s Display Driver with Rust and Mynewt]
 
* [https://electronut.in/getting-started-with-zephyr-rtos-on-nordic-nrf52832-hackable/ Getting Started with Zephyr RTOS on Nordic nRF52832 hackaBLE]
* [https://electronut.in/getting-started-with-zephyr-rtos-on-nordic-nrf52832-hackable/ Getting Started with Zephyr RTOS on Nordic nRF52832 hackaBLE]
* [https://blog.aegrel.ee/absniffer-cmsis-dap-sniffer.html Removing the lock and installing another firmware on the nRF52832 using CMSIS-DAP dongle on Linux]
* [https://blog.aegrel.ee/absniffer-cmsis-dap-sniffer.html Removing the lock and installing another firmware on the nRF52832 using CMSIS-DAP dongle on Linux]
* [https://github.com/JF002/nrf52-baseproject/wiki/Build,-program-and-debug-NRF52-project-with-JLink,-CMake-and-CLion Build, program and debug NRF52 project with JLink, CMake and CLion]
* [https://github.com/JF002/nrf52-baseproject/wiki/Build,-program-and-debug-NRF52-project-with-JLink,-CMake-and-CLion Build, program and debug NRF52 project with JLink, CMake and CLion]
* [https://www.nrbtech.io/blog/2020/1/4/using-clion-for-nordic-nrf52-projects Using CLion for Nordic nRF52 projects]
* [https://www.nrbtech.io/blog/2020/1/4/using-clion-for-nordic-nrf52-projects Using CLion for Nordic nRF52 projects]
* [https://dev.to/aaronc81/flashing-your-pinetime-using-an-st-link-and-openocd-54dd Flashing your PineTime using an ST-Link and OpenOCD]
* [https://dev.to/aaronc81/flashing-your-pinetime-using-an-st-link-and-openocd-54dd Flashing your PineTime using an ST-Link and OpenOCD]
* [https://zephyrlabs.github.io/Watchfaces/ Zephyrlabs: just a bunch of watchfaces made for the pinetime]
* [https://zephyrlabs.github.io/Watchfaces/ Zephyrlabs: just a bunch of watchfaces made for the pinetime]
* [https://pankajraghav.com/2021/04/03/PINETIME-STOPCLOCK.html Creating a stopwatch in Pinetime (with Infinitime)]


= Hardware =


 
== Display ==
== Hardware ==
 
=== Display ===


Note: The factory-default software on the PineTime does not auto-detect the display being disconnected when it has already booted. That can cause garbled output, to fix it just restart the PineTime.
Note: The factory-default software on the PineTime does not auto-detect the display being disconnected when it has already booted. That can cause garbled output, to fix it just restart the PineTime.
Line 111: Line 122:
* Chip select must be held low while driving the display. It must be high when using other SPI devices on the same bus (such as external flash storage) so that the display controller won't respond to the wrong commands.
* Chip select must be held low while driving the display. It must be high when using other SPI devices on the same bus (such as external flash storage) so that the display controller won't respond to the wrong commands.
* SPI must be used in mode 3. Mode 0 (the default) won't work.
* SPI must be used in mode 3. Mode 0 (the default) won't work.
* LCD_DISPLAY_* is used to enable the backlight. Set at least one to low to see anything on the screen.
* LCD_BACKLIGHT_* is used to enable the backlight. Set at least one to low to see anything on the screen.
* Use SPI at 8MHz (the fastest clock available on the nRF52832) because otherwise refreshing will be super slow.
* Use SPI at 8MHz (the fastest clock available on the nRF52832) because otherwise refreshing will be super slow.


Line 118: Line 129:
[https://github.com/adafruit/Adafruit-ST7735-Library/ Adafruit ST7789 driver in cpp]
[https://github.com/adafruit/Adafruit-ST7735-Library/ Adafruit ST7789 driver in cpp]


=== Battery measurement ===
== Battery measurement ==


Reading whether the PineTime has power attached is easy: simply read the charge indication pin (P0.12). When it is high it is running on battery, when it is low it is charging.
Reading whether the PineTime has power attached is easy: simply read the charge indication pin (P0.12). When it is high it is running on battery, when it is low it is charging.
Line 137: Line 148:
Converting this voltage to an estimated capacity in percent requires a more complicated algorithm, because Lithium-ion batteries have a non-linear discharge curve.
Converting this voltage to an estimated capacity in percent requires a more complicated algorithm, because Lithium-ion batteries have a non-linear discharge curve.


 
== Button ==
=== Button ===


The button on the side of the PineTime is disabled by default. To enable it, drive the button out pin (P0.15) high.
The button on the side of the PineTime is disabled by default. To enable it, drive the button out pin (P0.15) high.
Line 144: Line 154:
While enabled, the button in pin (P0.13) will be high when the button is pressed, and low when it is not pressed.
While enabled, the button in pin (P0.13) will be high when the button is pressed, and low when it is not pressed.


=== Touch panel ===
== Watch band ==
 
The PineTime uses a standard 20mm watch band / strap. There is a [https://forum.pine64.org/showthread.php?tid=9392&pid=81902 thread] in the forum discussing this.
 
== Touch panel ==


The touch panel is controlled by a Hynitron CST816S chips. Unfortunately, there is not much information about this chip on the internet apart from the datasheet below and a [https://github.com/lupyuen/hynitron_i2c_cst0xxse/ reference driver]. This is enough to implement a basic driver, but crucial information needed to implement advanced functionalities are missing (I²C protocol and registers, timings, power modes,...).
The touch panel is controlled by a Hynitron CST816S chips. Unfortunately, there is not much information about this chip on the internet apart from the datasheet below and a [https://github.com/lupyuen/hynitron_i2c_cst0xxse/ reference driver]. This is enough to implement a basic driver, but crucial information needed to implement advanced functionalities are missing (I²C protocol and registers, timings, power modes,...).


==== Pins ====
=== Pins ===


* P0.10 : Reset
* P0.10 : Reset
Line 155: Line 169:
* P0.07 : I²C SCL
* P0.07 : I²C SCL


==== I²C ====
=== I²C ===


* Device address : 0x15
* Device address : 0x15
* Frequency : from 10Khz to 400Khz
* Frequency : from 10Khz to 400Khz


'''NOTE : ''' The controller go to sleep when no event is detected. In sleep mode, the controller does not communicate on the I²C bus (it appears disconnected). So, for the communication to work, you need to tap on the screen so that the chip wakes-up.
'''NOTE: ''' The controller go to sleep when no event is detected. In sleep mode, the controller does not communicate on the I²C bus (it appears disconnected). So, for the communication to work, you need to tap on the screen so that the chip wakes-up.


==== Touch events ====
'''NOTE: ''' The I²C bus, also known as TWI bus has known issues, make sure to write your TWI driver with timeouts.
 
=== Touch events ===


Touch information is available from the 63 first registers of the controller. Remember: the device is in sleep mode when no touch event is detected. It means that you can read the register only when the touch controller detected an event. You can use the ''Interrupt'' pin to detect such event in the software.  
Touch information is available from the 63 first registers of the controller. Remember: the device is in sleep mode when no touch event is detected. It means that you can read the register only when the touch controller detected an event. You can use the ''Interrupt'' pin to detect such event in the software.  
Line 235: Line 251:
* Fields X, Y, Number of touch points and touch ID are updated. The others are always 0.
* Fields X, Y, Number of touch points and touch ID are updated. The others are always 0.


==== Registers ====
=== Registers ===


The reference driver specifies some registers and value, but there is no information about them:  
The reference driver specifies some registers and value, but there is no information about them:  
Line 311: Line 327:
'''WARNING : ''' <del>Writing the SLEEP command (write 0x05 in HYN_REG_POWER_MODE) seems to freeze the controller (it returns only static values) until the battery is totally drained and the whole system reset. Analysis and debugging is more than welcome!</del>
'''WARNING : ''' <del>Writing the SLEEP command (write 0x05 in HYN_REG_POWER_MODE) seems to freeze the controller (it returns only static values) until the battery is totally drained and the whole system reset. Analysis and debugging is more than welcome!</del>


==Accelerometer==
The on board accelerometer in devices shipped before July 2021 is a Bosch BMA421, connected to the I2C bus.
Devices shipped after July 2021 use a Bosch BMA425 accelerometer.


===Accelerometer===
=== Pins ===
The on board accelerometer is Bosch BMA421, connected to the I2C bus.
 
==== Pins ====


* P0.06 : I²C SDA
* P0.06 : I²C SDA
Line 323: Line 339:
I2C Device address : 0x18
I2C Device address : 0x18


= Datasheets, Schematics and Certifications=


== Datasheets and Schematics ==
== Schematics ==
 
=== Schematics ===
* [https://files.pine64.org/doc/PineTime/PineTime%20Schematic-V1.0a-20191103.pdf PineTime Schematic ver1.0a]
* [https://files.pine64.org/doc/PineTime/PineTime%20Schematic-V1.0a-20191103.pdf PineTime Schematic ver1.0a]
* [https://files.pine64.org/doc/PineTime/PineTime%20Port%20Assignment%20rev1.0.pdf PineTime GPIO Port Assignment ver1.0]
* [https://files.pine64.org/doc/PineTime/PineTime%20Port%20Assignment%20rev1.0.pdf PineTime GPIO Port Assignment ver1.0]
Line 332: Line 347:
Note: The part number for the SPI FLASH in the schematic diagram is not correct, the PineTime features a larger external FLASH device, see below.
Note: The part number for the SPI FLASH in the schematic diagram is not correct, the PineTime features a larger external FLASH device, see below.


=== Chip Datasheets ===
== Chip Datasheets ==
* NORDIC nRF52832 information:
* NORDIC nRF52832 information:
** [https://files.pine64.org/doc/datasheet/pinetime/nRF52832%20product%20brief.pdf nRF52832 Product Brief]
** [https://files.pine64.org/doc/datasheet/pinetime/nRF52832%20product%20brief.pdf nRF52832 Product Brief]
** [https://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.1.pdf nRF52832 Product Specification v1.1]
** [https://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.4.pdf nRF52832 Product Specification v1.4]
* ARMv7-M information:
* ARMv7-M information:
** [https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf ARMv7-M Architecture Reference Manual]
** [https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf ARMv7-M Architecture Reference Manual]


=== Component Datasheets ===
== Component Datasheets ==
* PMU (Power Management Unit) information:
* PMU (Power Management Unit) information:
** [https://files.pine64.org/doc/datasheet/pinetime/SGM40561.pdf SGMicro SGM40561 Single Cell Charger Datasheet]
** [https://files.pine64.org/doc/datasheet/pinetime/SGM40561.pdf SGMicro SGM40561 Single Cell Charger Datasheet]
Line 355: Line 370:
** [https://wiki.pine64.org/images/2/2f/CST816S.zip Touch Controller Datasheet en]
** [https://wiki.pine64.org/images/2/2f/CST816S.zip Touch Controller Datasheet en]
* Sensor:
* Sensor:
** [https://files.pine64.org/doc/datasheet/pinetime/BST-BMA421-FL000.pdf BOSCH BMA421 Triaxial VAcceleration Sensor Product Brief]
** [https://datasheet.lcsc.com/lcsc/1912111437_Bosch-Sensortec-BMA425_C437656.pdf BOSCH BMA425 Triaxial Acceleration Sensor Datasheet on current PineTime device]
** [https://wiki.pine64.org/images/c/cc/Bst-bma400-ds000.pdf BOSCH BMA400 3-axes ultra-low power accelerometer datasheet]
** [https://files.pine64.org/doc/datasheet/pinetime/BST-BMA421-FL000.pdf BOSCH BMA421 Triaxial Acceleration Sensor Product Brief on early PineTime device]
** [https://files.pine64.org/doc/datasheet/pinetime/HRS3300%20Heart%20Rate%20Sensor.pdf TianYiHeXin HRS3300 PPG Heart Rate Sensor Data Sheet]
** [https://files.pine64.org/doc/datasheet/pinetime/HRS3300%20Heart%20Rate%20Sensor.pdf TianYiHeXin HRS3300 PPG Heart Rate Sensor Data Sheet]


== Certificates ==
** [https://files.pine64.org/doc/cert/FCC_Grant_PineTime_2AWAG-PINETIME_DTS.pdf PineTime FCC Certificate]
** [https://files.pine64.org/doc/cert/CTL2203033031-W%20RED%20Certificate.pdf PineTime CE Certificate]
== Manuals ==
* [[:File:PineTime Quick Start Guide.pdf|PineTime Quick Start Guide]]
= Community case design =
* [https://www.thingiverse.com/thing:4172849 PineTime Smart Watch case by dara0s at thingiverse]
* [https://www.thingiverse.com/thing:4651462 PineTime dev kit back fix by joaquimorg at thingiverse]
* [https://www.thingiverse.com/thing:4763267 PineTime dev kit charging holder v4 by zevix81 at thingiverse]
* [https://www.prusaprinters.org/prints/88913-pinetime-charger-case PineTime Charger Travel Case by brett at PrusaPrinters]
[[Category:PineTime]]
[[Category:PineTime]]

Revision as of 14:50, 15 November 2022

The PineTime

The PineTime is a free and open source smartwatch capable of running custom-built open operating systems. Some of the notable features include a heart rate monitor, a week-long battery, and a capacitive touch IPS display that is legible in direct sunlight. It is a fully community driven side-project which anyone can contribute to, allowing you to keep control of your device.

Frequently asked questions / Getting started

Read these first!

Default OS

The current default operating system on the PineTime is called InfiniTime, you can find more information about the firmware on its GitHub page. First devkits shipped with a proprietary custom firmware.

You can find a list of available firmware and other software here: PineTime Development

Companion Apps

PineTime/InfiniTime needs a companion app to e.g. upload a firmware, get notifications from a phone, or just get the date/time. Here are some companion apps:

  • Gadgetbridge (Android >= 4.4) - Companion mobile app, supports updating firmware/bootloader, send notifications, etc.
  • Amazfish (SailfishOS and Linux) - Companion mobile and desktop app, supports updating firmware/bootloader, send notifications, etc.
  • Siglo (Linux) - Companion desktop app.
  • PinetimeFlasher (Windows) - Companion desktop app, only supports flashing firmware.
  • nRFConnect (iOS) - Only supports flashing firmware. The app is closed source and versions after 4.24.3 don't work for the PineTime anymore
  • InfiniLink (iOS) - Companion mobile app in development. Supports updating firmware/bootloader, setting date and time, Apple Music controls, and battery and heart rate data.
  • itd (Linux)

Short overview / Specifications

Dimensions: 37.5 x 40 x 11mm
Weight: 38 grams
IP Rating: IP67 (waterproof to 1 meter (sealed edition!))
Display:

Size: 1.3 inches (33mm) diagonal
Type: IPS capacitive touchscreen, RGB 65K colors
Display Controller: ST7789
Resolution: 240x240 pixels

System on Chip: Nordic Semiconductor nRF52832
Flash: 512KB with additional 4MB SPI NOR
RAM: 64KB
Bluetooth: 5.0 (including Bluetooth Low Energy)
Sensors: Accelerometer, Heart rate sensor
Feedback: Vibration motor
Battery: 170-180mAh 3.8V LiPo

Community

Forum

Chat

Developers and coding

Development efforts

To read more about development on the PineTime, the projects available and more technical details, check out PineTime Development

Useful articles and blog posts

If you want to dive in to the ecosystem, here's a short list of various articles and blog posts that can help you set up your soft- or hardware development environment.

Hardware

Display

Note: The factory-default software on the PineTime does not auto-detect the display being disconnected when it has already booted. That can cause garbled output, to fix it just restart the PineTime.

The display is driven using the ST7789 display controller. Use the following pins to drive the screen:

PineTime pin ST7789 pin
LCD_SCK (P0.02) SPI clock
LCD_SDI (P0.03) SPI MOSI
LCD_RS (P0.18) Command/Data pin (CD)
LCD_CS (P0.25) Chip select
LCD_RESET (P0.26) Display reset
LCD_BACKLIGHT_{LOW,MID,HIGH} Backlight (active low)

Notes:

  • Chip select must be held low while driving the display. It must be high when using other SPI devices on the same bus (such as external flash storage) so that the display controller won't respond to the wrong commands.
  • SPI must be used in mode 3. Mode 0 (the default) won't work.
  • LCD_BACKLIGHT_* is used to enable the backlight. Set at least one to low to see anything on the screen.
  • Use SPI at 8MHz (the fastest clock available on the nRF52832) because otherwise refreshing will be super slow.

References:

Adafruit ST7789 driver in cpp

Battery measurement

Reading whether the PineTime has power attached is easy: simply read the charge indication pin (P0.12). When it is high it is running on battery, when it is low it is charging.

Reading the battery voltage is a bit harder. For that you can use the battery voltage pin on P0.31 (AIN7). The returned value is 12 bits, which means it is 0..4095. You can get the measured voltage with the following formula, assuming a reference voltage of 3.3V (this is configurable in the ADC):

adcVoltage = adcValue / (4095 / 3.3)

The measured voltage is actually half of the actual battery voltage, because the ADC is connected between a voltage divider where both resistors are 1MΩ. This can be corrected by multiplying the value:

batteryVoltage = adcValue * 2 / (4095 / 3.3)

It's often better to avoid floating point values on embedded systems and in this case there is no reason to use float at all, we can just represent the value in millivolts. Therefore the formula can be simplified to:

batteryVoltage = adcValue * 2000 / (4095 / 3.3)
batteryVoltage = adcValue * 2000 / 1241

Converting this voltage to an estimated capacity in percent requires a more complicated algorithm, because Lithium-ion batteries have a non-linear discharge curve.

Button

The button on the side of the PineTime is disabled by default. To enable it, drive the button out pin (P0.15) high.

While enabled, the button in pin (P0.13) will be high when the button is pressed, and low when it is not pressed.

Watch band

The PineTime uses a standard 20mm watch band / strap. There is a thread in the forum discussing this.

Touch panel

The touch panel is controlled by a Hynitron CST816S chips. Unfortunately, there is not much information about this chip on the internet apart from the datasheet below and a reference driver. This is enough to implement a basic driver, but crucial information needed to implement advanced functionalities are missing (I²C protocol and registers, timings, power modes,...).

Pins

  • P0.10 : Reset
  • P0.28 : Interrupt (signal to the CPU when a touch event is detected)
  • P0.06 : I²C SDA
  • P0.07 : I²C SCL

I²C

  • Device address : 0x15
  • Frequency : from 10Khz to 400Khz

NOTE: The controller go to sleep when no event is detected. In sleep mode, the controller does not communicate on the I²C bus (it appears disconnected). So, for the communication to work, you need to tap on the screen so that the chip wakes-up.

NOTE: The I²C bus, also known as TWI bus has known issues, make sure to write your TWI driver with timeouts.

Touch events

Touch information is available from the 63 first registers of the controller. Remember: the device is in sleep mode when no touch event is detected. It means that you can read the register only when the touch controller detected an event. You can use the Interrupt pin to detect such event in the software.

These 63 bytes contain up to 10 touch point (X, Y, event type, pressure,...) :

Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0 ?
1 GestureID : (Gesture code ,

0x00: no gesture,

0x01: Slide down,

0x02: Slide up,

0x03: Slide left,

0x04: Slide right,

0x05: Single click,

0x0B: Double click,

0x0C: Long press)

2 ? Number of touch points
3 Event (0 = Down, 1 = Up, 2 = Contact) ? X (MSB) coordinate
4 X (LSB) coordinate
5 ? Touch ID Y (MSB) coordinate
6 Y (LSB) coordinate
7 Pressure (?)
8 Miscellaneous (?)

Bytes 3 to 8 are repeated 10 times (10*6 + 3 = 63 bytes).

NOTES

  • The touch controller seems to report only 1 touch point
  • Fields X, Y, Number of touch points and touch ID are updated. The others are always 0.

Registers

The reference driver specifies some registers and value, but there is no information about them:

Register Address Description
HYN_REG_INT_CNT 0x8F
HYN_REG_FLOW_WORK_CNT 0x91
HYN_REG_WORKMODE 0x00 0 = WORK, 0x40 = FACTORY
HYN_REG_CHIP_ID 0xA3
HYN_REG_CHIP_ID2 0x9F
HYN_REG_POWER_MODE 0xA5 0x03 = SLEEP (reset the touchpanel using the reset pin before using this register : pin_low, delay 5ms, pin_high, delay 50ms then write 3 to register 0xA5)
HYN_REG_FW_VER 0xA6
HYN_REG_VENDOR_ID 0xA8
HYN_REG_LCD_BUSY_NUM 0xAB
HYN_REG_FACE_DEC_MODE_EN 0xB0
HYN_REG_GLOVE_MODE_EN 0xC0
HYN_REG_COVER_MODE_EN 0xC1
HYN_REG_CHARGER_MODE_EN 0x8B
HYN_REG_GESTURE_EN 0xD0
HYN_REG_GESTURE_OUTPUT_ADDRESS 0xD3
HYN_REG_ESD_SATURATE 0xED 0xED

WARNING : Writing the SLEEP command (write 0x05 in HYN_REG_POWER_MODE) seems to freeze the controller (it returns only static values) until the battery is totally drained and the whole system reset. Analysis and debugging is more than welcome!

Accelerometer

The on board accelerometer in devices shipped before July 2021 is a Bosch BMA421, connected to the I2C bus. Devices shipped after July 2021 use a Bosch BMA425 accelerometer.

Pins

  • P0.06 : I²C SDA
  • P0.07 : I²C SCL
  • P0.08 : Interrupt

I2C Device address : 0x18

Datasheets, Schematics and Certifications

Schematics

Note: The part number for the SPI FLASH in the schematic diagram is not correct, the PineTime features a larger external FLASH device, see below.

Chip Datasheets

Component Datasheets

Certificates

Manuals

Community case design