Difference between revisions of "PineCone"
(Formatting updates, add some more info about USB-C issue) |
(Expand JTAG info) |
||
Line 34: | Line 34: | ||
** 32 pin QFN 4mm x 4mm | ** 32 pin QFN 4mm x 4mm | ||
* JTAG support (See below for BL602 impact) | * JTAG support (See below for BL602 impact) | ||
{| class="wikitable" | [[File:BL602_Block_Diagram.jpg|600px]] | ||
|+ | |||
== JTAG == | |||
{| class="wikitable floatright" | |||
|+ Default JTAG pins | |||
|- | |- | ||
| GPIO Pin || JTAG Pin | | GPIO Pin || JTAG Pin | ||
Line 50: | Line 54: | ||
|} | |} | ||
BL602 multiplexes four GPIO pins to provide the familiar JTAG lines. See the accompanying table for the default pin mappings. | |||
[ | These are the default JTAG pins in use after a cold boot. However, many pieces of software, including the demo that's installed by default on new PineCones, remap these pins to other functions. You cannot use the default wiring for JTAG while such software is running. This issue is especially prevalent on the PineCone because three of the default JTAG pins are connected to the onboard RGB LED. Nothing about the LED itself interferes with JTAG, but any program that uses the LED will necessarily remap some of the default JTAG pins to be GPIO. | ||
The MaskROM download mode that the BL602 enters when you tie GPIO8 high does '''not''' remap the default JTAG pins, and so you can and should use that mode while checking basic functionality of your JTAG adapter. | |||
Note that, just as software can remap the default JTAG pins to be something else, it can also remap other pins to be JTAG. Control over this is quite granular, with 5-6 candidate pins for each individual JTAG signal that can be mapped independently of one another. LEE Lup Yuen has written some [https://lupyuen.github.io/articles/openocd#free-the-led-from-jtag-port sample code] showing how to remap the JTAG pins so that your software can use the LED without giving up support for debugging. | |||
Revision as of 21:40, 29 December 2020
- PineCone BL-602 EVB (Evaluation Board):
BL602 Specifications
- CPU: 32-bit RV32IMAFC RISC-V “SiFive E24 Core”
- Memory:
- 128KB ROM
- 276KB SRAM
- 1Kb eFuse
- 2MB Embedded Flash
- Security:
- Secure boot
- Secure debug
- AES 128/192/256
- SHA-1/224/256
- TRNG (True Random Number Generator)
- PKA (Public Key Accelerator)
- Wireless:
- Wi-Fi 802.11 b/g/n
- Bluetooth® Low Energy 5.0
- Wi-Fi Fast connection with BLE assistance
- Wi-Fi and BLE coexistence
- Wi-Fi Security WPS/WEP/WPA/WPA2/WPA3
- STA, SoftAP and sniffer modes
- Multi-Cloud connectivity
- 2.4 GHz RF transceiver
- Integrated RF balun, PA/LNA
- Package Type:
- 32 pin QFN 4mm x 4mm
- JTAG support (See below for BL602 impact)
JTAG
GPIO Pin | JTAG Pin |
GPIO17 | TDI |
GPIO11 | TDO |
GPIO12 | TMS |
GPIO14 | TCK |
BL602 multiplexes four GPIO pins to provide the familiar JTAG lines. See the accompanying table for the default pin mappings.
These are the default JTAG pins in use after a cold boot. However, many pieces of software, including the demo that's installed by default on new PineCones, remap these pins to other functions. You cannot use the default wiring for JTAG while such software is running. This issue is especially prevalent on the PineCone because three of the default JTAG pins are connected to the onboard RGB LED. Nothing about the LED itself interferes with JTAG, but any program that uses the LED will necessarily remap some of the default JTAG pins to be GPIO.
The MaskROM download mode that the BL602 enters when you tie GPIO8 high does not remap the default JTAG pins, and so you can and should use that mode while checking basic functionality of your JTAG adapter.
Note that, just as software can remap the default JTAG pins to be something else, it can also remap other pins to be JTAG. Control over this is quite granular, with 5-6 candidate pins for each individual JTAG signal that can be mapped independently of one another. LEE Lup Yuen has written some sample code showing how to remap the JTAG pins so that your software can use the LED without giving up support for debugging.
PineCone BL602 EVB information and schematics
- Approximate dimensions: 26mm x 43mm
- Board layout:
- PineCone BL602 EVB schematic ver 1.1
- Note: In PineCone revision 1.1 ("BL62B_EVB V1.1" silkscreened on back of board), CC1 and CC2 share one 5.1KΩ resistor. This means the board will fail to power when you use an e-marked USB-C cable like the one that comes with Apple chargers. See this article for details of why this happens. The next schematic design will give each line its own 5.1KΩ resistor as per the USB-C specification.
- The board uses a CH340 Serial/USB adapter. This chip is commonly used in Arduino-class development boards. It is a full speed (12Mbps) USB interface and has vendor ID 0x1a86 with product ID 0x7523.
- The GPIO pins (11, 12, 14, 17) plus the nearby RESET, POWER, and GND pins are all located on one side of the board, on J1 to provide JTAG connection.
Datasheets for components and peripherals
- Bouffalo BL-602 SoC information:
- Bouffalo Lab BL602 SoC Datasheet V1.2
- Bouffalo Lab BL602 SoC Datasheet V1.1
- Bouffalo Lab BL602 SoC Reference Manual V1.1
- Please note that the Chinese wording "寄存器描述" means "Register Description" in reference manual v1.1.
- USB/Serial adapter:
Misc notes
Planned to be available in at least three form factors:
- NUT-01S -> ESP-01S
- NUT-12S -> ESP-12S
- NUT-15 -> RTL8723/AMPAK
Loading code
To load code, you must move the jumper to the edge closest to the board, press reset, load the code, move the jumper back toward the center of the board, and press reset again.
There are currently a number of loaders in progress, each with differing degrees of completeness and success on various operating systems.
- In the build tree, there is BLFlashCube for Windows and a flash_build for Linux, neither with source.
- bl60x-flash is in Python and has been reported successful on MacOS catalina (10.15.6) by Punnerud and madushan1000.
- BLOpenFlasher is a WIP, written in go, by Bouffalo Labs to provide source for a flash utility.
- bl602tool is a Python utility in development.
- Bouffalo's Python Flash Loader is a new (Dec 02) flash loader by the makers of the chip.
- Bouffalo's image build smooshes code and adds headers for downloads.
Development efforts
- PineCone BL602 GitHub Page (PINE64 fork) has compilers, linkers, and all the code to build on Windows, Linux (x86_64), and MacOS.
- Bouffalo Lab GitHub Page
- BL602 Developer organize documentation GitHub Page
- BL602 Developer organize tool GitHub Page
- Programming tool for Bouffalo Labs BL602/BL604 chips
- BL602 reverse engineering working group
- Linux kernel module
- BL602 serial flasher
- Awesome Bouffalo